300 | 7 | 18 |
下载次数 | 被引频次 | 阅读次数 |
多边形故障作为车轮常见的故障形式之一,不仅会增大列车的振动和噪声、降低列车乘坐舒适性,还会加剧轮轨相互作用力,导致车辆和轨道部件过早出现疲劳失效,对列车安全稳定运行造成不良影响,因此对车轮多边形故障进行诊断具有重要意义。本文根据多边形故障轴箱振动响应提出了基于总体经验模态分解(EEMD)的车轮多边形故障诊断方法。其核心是对轴箱振动加速度进行EEMD分解,然后通过相关能量(CN)自动提取车轮多边形故障的IMF分量,并通过包络谱分析诊断车轮是否存在多边形故障,最后通过频谱分析诊断车轮多边形阶次。通过仿真数据和线路试验数据对该方法进行验证,验证结果表明,该方法能有效诊断出车轮多边形故障。
Abstract:As one of the common failure forms of train wheels, polygonal fault not only increase the vibration and noise of the railway vehicle, reduce the ride comfort of the railway vehicle, but also enhance the force between the wheel and the rail, which leads to premature fatigue and failure of the vehicle and track components, thus affect the safe and stable operation of railway vehicles. Therefore, it is of great significance to diagnose the polygonal fault of the wheel. According to the vibration response of the axle box of the polygonal wheel, a fault diagnosis method of polygonal wheel based on EEMD is proposed in this paper. The core of the proposed method is to perform EEMD decomposition of the axle box vibration acceleration, and then automatically extract the IMF component of the polygonal fault through the correlated energy(CN), and next diagnose the wheel polygonal fault through the envelope spectrum analysis, and finally determine the polygon order through the spectrum analysis. Simulation test and line test are conducted to verify the effectiveness of the proposed method, which proves that the proposed method can effectively diagnose the wheel polygonal fault effectively.
[1]何伟,张合吉,陈帅,等.车轮多边形对地铁车辆一系钢弹簧疲劳寿命的影响研究[J].机械,2020,47(6):44-50.
[2]张国平,张志波,吴兴文,等.多边形激励下动车组动态响应研究[J].机械,2020,47(5):67-74.
[3]江英杰,李伟,陶功权,等.车轮多边形磨损对高速线路轨道动态行为影响的试验研究[J].噪声与振动控制,2019,39(6):117-121,245.
[4]Cai W,Chi M,Wu X,et al. Experimental and numerical analysis of the polygonal wear of high-speed trains[J]. Wear, 2019(440-441):203079.
[5]Fu B,Bruni S,Luo S. Study on wheel polygonization of a metro vehicle based on polygonal wear simulation[J]. Wear, 2019(438-439):203071.
[6]陶功权.和谐型电力机车车轮多边形磨耗形成机理研究[D].成都:西南交通大学,2018.
[7]王晓龙.基于改进的Wigner-Ville时频分析的城轨列车车轮不圆检测方法研究[D].南京:南京理工大学,2017.
[8]谢利明,高晓蓉,罗林,等.车轮踏面不圆度在线监测技术的现状与分析[J].铁道技术监督,2012,40(6):12-14.
[9]刘志亮,潘登,左明健,等.轨道车辆故障诊断研究进展[J].机械工程学报,2016,52(14):134-146.
[10]李奕璠,刘建新,李忠继.基于Hilbert-Huang变换的列车车轮失圆故障诊断[J].振动.测试与诊断,2016,36(4):734-739,812-813.
[11]徐晓迪,刘金朝,孙善超,等.基于车辆动态响应的车轮多边形自动识别方法[J].铁道建筑,2019,59(9):101-105.
[12]孙琦,张兵,李艳萍,等.一种波长固定的车轮多边形在线故障检测方法[J].铁道科学与工程学报,2018,15(9):2343-2348.
[13]Zhaohua Wu,Norden E. Huang. Ensemble Empirical Mode Decomposition:A Noise-Assisted Data Analysis Method[J].Advances in Adaptive Data Analysis,2009,1(1):1-41.
[14]Huang N E. Review of empirical mode decomposition[J].Proceedings of Spie-wavelet Applications VIII,2001(4391):71-80.
[15]陈东月.基于改进的CEEMD及IMF价值评价的高速列车齿轮箱故障诊断研究[D].成都:西南交通大学,2018.
[16]王忆佳.车轮踏面伤损对高速列车动力学行为的影响[D].成都:西南交通大学,2014.
[17]陈龙.地铁车轮不圆形成机理研究[D].成都:西南交通大学,2019.
[18]陈博,陈光雄.基于MEEMD和GA-SVM的列车车轮多边形故障识别方法[J].噪声与振动控制,2018,38(03):157-161+197.
基本信息:
DOI:
中图分类号:U279.323
引用信息:
[1]李凤林,杜红梅,巫忠书等.基于EEMD的列车车轮多边形故障诊断方法[J].机械,2021,48(05):43-51.
基金信息: