26 | 0 | 37 |
下载次数 | 被引频次 | 阅读次数 |
电动机作为旋喷泵拖动系统的关键设备,其起动时间直接关系到设备的运行安全与寿命。针对旋喷泵因转动惯量增加而导致电动机面临起动时间过长、起动困难以及温升超限风险等问题,为提升电动机的起动可靠性,结合旋喷泵单轴电机拖动系统结构模型、电动机机械特性与泵类负载特性,建立电动机起动时间与负载转动惯量的微分方程,采用离散分段迭代方法求解起动时间。结果表明,转动惯量与起动时间呈线性正比关系。以RP5010S型旋喷泵(转动惯量为3.942 kg·m2)配套的YBX4-200L1-2WF2/30kW电动机为例,通过图解法分析闭阀工况下电动机直接起动的转速-时间关系,得出起动时间为7.81 s,满足工程设计要求。该研究结果可为大转动惯量高扬程旋喷泵的电动机选型与起动性能校核提供理论依据。
Abstract:As a key component of the drag system of a rotary jet pump, the motor's starting time directly affects operational safety and lifespan of the equipment. Due to the increase in the moment of inertia of the rotary jet pump, the motor is exposed to problems such as long starting times, difficulty in starting, and the risk of exceeding the temperature rise limit. In order to improve the starting reliability of the motor, the differential equations of the motor starting time and the load moment of inertia are established, combined with the structure model of the single-axis motor drag system of the rotary jet pump, the mechanical characteristics of the motor and the load characteristics of the pump. The starting time is solved by using a discrete segmented iteration method that combines the motor's mechanical characteristics with the torque characteristics of the pump load. The results show that the moment of inertia is linearly proportional to the starting time. Taking the YBX4-200L1-2WF2/30 kW motor for RP5010S rotary jet pump(with a moment of inertia of 3.942 kg· m2) as an example, the speed-time relationship during direct motor starting under closed-valve conditions was analyzed by the graphical method, and the starting time was obtained as 7.81 s, which met the engineering design requirements. These findings provide a theoretical basis for motor selection and start-up performance verification of high-head rotary jet pumps with a large moment of inertia.
[1]王成木,黎成行,尹晓,等.旋喷泵水力性能的试验研究[J].水泵技术,2000(5):3-7.
[2]赖小平.三相异步电动机降压起动时间与起动负荷的探讨[J].电工技术,1999(2):18-19.
[3]韩力,雷艺,汪同斌,等.大转动惯量负载用感应电机转子起动温升分析[J].重庆大学学报,2017,40(10):60-69.
[4]王灏,梁国斌,姚非.论3kW及其以下异步电动机的起动性能[J].现代商贸工业,2018,39(5):192-193.
[5]王金旋.旋喷泵旋腔内流场特性及叶轮与集流管匹配关系的研究[D].兰州:兰州理工大学,2021.
[6]闫春乐,衡中伟,吕一惟.旋转电机转动惯量测量新方法[J].电气传动自动化,2018,40(3):55-57.
[7]胡祖梁.异步电动机起动时间的分析和计算[J].电工技术杂志,1991(4):6-10.
[8]杨春平.电动机起动时间计算式分析及应用[J].电世界,2018,59(3):48-50.
[9]汤惠明,李光耀,王云龙.风机专用高效三相异步电动机高起动转矩的分析与计算[J].电机与控制应用,2014,41(9):22-24.
[10]苏国霞.转动惯量对同步电机起动及运行的影响分析[J].防爆电机,2024,59(3):35-37.
[11]温亚芹.刚体转动惯量计算方法研究[J].黑龙江科学,2019,10(6):40-42.
[12]高丰,王福忠,韩素敏.基于ANSYS Workbench的电机轴系模态分析[J].机械,2021,48(6):64-69.
[13]张伟浩.风机用拖动大转动惯量电动机起动过程分析[J].防爆电机,2021,56(3):27-29.
[14]苏国霞.三相同步电动机起动时间计算[J].电机技术,2014(6):33-35.
[15]李梦达,李明辉,曹玉泉.异步电机降压起动的起动时间、起动功率和起动损耗[J].科学技术与工程,2011,11(21):5025-5028.
[16]秦庆霞,陈江.高压三相异步电动机的起动时间及其计算[J].防爆电机,2010,45(4):16-18.
基本信息:
DOI:
中图分类号:TH38
引用信息:
[1]李双双,尹晓,陈军等.旋喷泵用电动机起动时间研究及应用[J].机械,2025,52(08):1-6.
基金信息:
四川省工业发展资金产业技术研发和创新能力提升项目(2022JB001)