nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2023, 11, v.50 1-8
基于数字孪生的柔性线状态监测与分析系统
基金项目(Foundation): 国家自然科学基金(92060114); 成都四威高科技产业园有限公司技术开发项目(HG2022086JG2022183)
邮箱(Email): jfh@scu.edu.cn;
DOI:
摘要:

随着智能制造的发展,数字孪生技术在制造业中的应用逐步深化,可以用于复杂设备的运行监测。为实现柔性生产线的三维可视化与加工过程监控,同时指导用户对生产过程进行管理和预测,设计开发了一种基于数字孪生的柔性生产线状态监测系统。该系统的基本架构包括数据保障层、建模计算层、数字孪生功能层、用户空间层,保障了系统的功能性、时效性、可操作性等。同时从几何模型、行为模型、数据模型三个维度构建了数字孪生系统模型,实现了动作特征虚实融合一致性和工艺数据与质量数据采集。以某柔性生产线为例进行实验测试与分析,系统可以与实际柔性生产线正常通讯并对数据做出响应,且延迟均值为131.1 ms,可见虚拟映射与现实状况保持高度一致,验证了该方法的可行性。

Abstract:

With the development of smart manufacturing, the application of digital twin technology in manufacturing industry has been gradually deepened and can be used for the operation monitoring of complex equipment. A digital twin-based flexible production line condition monitoring system is designed and developed to realize the 3D visualization and the process monitoring of flexible production lines, as well as to guide users to manage and predict the production process. The basic architecture of the system includes the data assurance layer, the modeling and calculation layer, the digital twin function layer, and the user space layer, which guarantees the functionality, timeliness, and operability of the system. Meanwhile, the digital twin system model is constructed from the 3 dimensions of geometric model, behavioral model and data model, which realizes the consistency of virtual-real fusion of action features and the collection of process data and quality data. The experimental testing and analysis on a flexible production line show that the system can communicate with the actual flexible production line normally and respond to the data, and the average value of delay is 131.1 ms, which shows that the virtual mapping is highly consistent with the real situation and verifies the feasibility of the method.

参考文献

[1]Negri E,Fumagalli L,Macchi M. A Review of the Roles of Digital Twin in CPS-based Production Systems[J]. Procedia Manufacturing,2017(11):939-948.

[2]周济.智能制造——“中国制造2025”的主攻方向[J].中国机械工程,2015,17(1):2273-2284.

[3]肖通,江海凡,丁国富,等.五轴磨床数字孪生建模与监控研究[J].系统仿真学报,2021,33(12):2880-2890.

[4]王旭初,白清顺,王鹏,等.微细铣削的数字孪生建模技术研究进展[J].航空制造技术,2021,64(20):56-64.

[5]Qi Q,Tao F,Hu T,et al. Enabling technologies and tools for digital twin[J]. Journal of Manufacturing Systems,2021(58):3-21.

[6]陶飞,刘蔚然,刘检华,等.数字孪生及其应用探索[J].计算机集成制造系统,2018,24(1):1-18.

[7]陶飞,马昕,胡天亮,等.数字孪生标准体系[J].计算机集成制造系统,2019,25(10):2405-2418.

[8]王晋生,毕雪峰,黄杰,等.基于转化过程数字孪生模型的装备数字化方法与实践[J].中国仪器仪表,2021(11):19-24.

[9]Michael Schluse M P L A. Experimentable Digital Twins—Streamlining Simulation-Based Systems Engineering for Industry 4. 0[J].IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,2018,14(4):1722-1731.

[10]Negri E, Fumagalli L, Cimino C, et al. FMU-supported simulation for CPS Digital Twin[J]. Procedia Manufacturing,2019(28):201-206.

[11]Schleich B,Warmefjord K,Soderberg R,et al. Geometrical Variations Management 4.0:towards next Generation Geometry Assurance:15TH CIRP CONFERENCE ON COMPUTER AIDED TOLERANCING,CIRP CAT 2018[Z]. MORONI G,PETRO S. 15th CIRP Conference on Computer Aided Tolerancing(CIRP CAT):2018:3-10.

[12]施佳宏,刘晓军,刘庭煜,等.面向生产线仿真的数字孪生逻辑模型构建方法[J].计算机集成制造系统,2022,28(2):442-454.

[13]张佳朋,刘检华,龚康,等.基于数字孪生的航天器装配质量监控与预测技术[J].计算机集成制造系统,2021,27(2):605-616.

[14]张旭辉,张超,王妙云,等.数字孪生驱动的悬臂式掘进机虚拟操控技术[J].计算机集成制造系统,2021,27(6):1617-1628.

基本信息:

DOI:

中图分类号:TP274;TH165

引用信息:

[1]姚潇潇,包壁祯,祝丽莎等.基于数字孪生的柔性线状态监测与分析系统[J].机械,2023,50(11):1-8.

基金信息:

国家自然科学基金(92060114); 成都四威高科技产业园有限公司技术开发项目(HG2022086JG2022183)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索