三峡大学机械与动力学院;常州大学机械工程学院;
针对传统目标检测算法无法自适应提取目标相应特征并完成识别的现象,提出一种基于快速区域卷积神经网络(Faster R-CNN)模型的电器识别方法,其优势在于可以自适应获取不同场景下目标的特征,避免由于人为设计目标的特征而带来的主观因素影响,具有良好的鲁棒性与准确性。FasterR-CNN中首先通过建立区域建议网络RPN(Region Proposal Network)代替Fast R-CNN中的Selective Search方法,得到建议位置后再进行检测。为了解决训练过程当中正负样本失衡问题,在Faster R-CNN中引入了难负样本挖掘策略,增强了模型的判别能力,提高检测的精度。
226 | 2 | 34 |
下载次数 | 被引频次 | 阅读次数 |
[1]郭汉丁,张印贤,郭伟,等.废旧电器回收再生利用产业链价格协同机理研究[J].生态经济,2013(2):110-112.
[2]Girshick R,Donahue J,Darrell T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C].Proceedings of the IEEE conference on computer vision and pattern recognition,2014.
[3]Girshick R. Fast R-CNN[C]. Proceedings of the IEEE conference on computer vision and pattern recognition,2015:1440-1448.
[4]Ren S, He K, Girshick R, et al. Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[C].International conference on neural information processing systems,2015:1137-1149.
[5]张玲,陈丽敏,何伟,等.基于视频的改进帧差法在车流量检测中的应用[J].重庆大学学报(自然科学版),2004(5):31-33,73.
[6]李超,熊璋,赫阳,等.基于帧间差的区域光流分析及其应用[J].计算机工程与应用,2005(31):199-201,226.
[7]LeCun Y, Boser B E, Denker JS, et al. Handwritten digit recognition with a back-propagation network[C]. Advances in neural information processing systems,1989.
[8]张书洲.基于深度学习的Logo检测与识别技术研究[D].成都:电子科技大学,2018.
[9]乐国庆.基于车载视觉系统的目标检测优化算法研究[D].北京:北京交通大学,2017.
[10]邹雷.基于深度学习的车辆重识别方法[D].武汉:华中科技大学,2017.
[11]Tao Kong,Anbang Yao,Yurong Chen,Fuchun Sun. HyperNet:Towards Accurate Region Proposal Generation and Joint Object Detection[C]. Proceedings of the IEEE conference on computer vision and pattern recognition,2016.
[12]项阳.基于深度学习的无人机影像车辆提取[D].赣州:江西理工大学,2018.
[13]Shrivastava A, Gupta A, Girshick R. Training region-based object detectors with online hard example mining[C]. Proc of IEEE Conference on Computer Vision and Pattern Recognition,2016:761-769.
[14]王林. Faster R-CNN模型在车辆检测中的应用[J].计算机应用,2018,38(3):666-670.
[15]Li Jianjun,Peng Kangjian,Chang Chinchen. An Efficient Object Detection Algorithm Based on Compressed Networks[J].Symmetry,2018,10(7):235.
[16]Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C]. Proc of European conference on Computer Vision, Cham:Springer International Publishing AG,2014:818-833.
[17]Haykin S,Kosko B. Gradient based learning applied to document recognition[J]. Proceedings of the IEEE,1998,86(11):2278-2324.
基本信息:
DOI:
中图分类号:TM925;TP391.41;TP18
引用信息:
[1]陈从平,李游,徐道猛等.基于深度学习的电器目标检测[J].机械,2020,47(01):1-8.
基金信息:
国家重点研发计划课题(2018YFC1903101,废线路板器件智能拆解和分选技术研究与示范);; 国家自然科学基金项目(51475266,流体微挤出/堆积制备组织工程支架过程形态调控机理研究)