74 | 0 | 32 |
下载次数 | 被引频次 | 阅读次数 |
车轮多边形普遍存在于铁路车辆上,尤其是在高速情况下会对车辆和轨道产生强烈的周期性激励,影响车辆运行安全和乘客舒适性,因此研究车轮多边形的检测方法具有重要意义。采用轴箱垂向振动加速度信号作为检测数据,提出一种基于角域同步平均的高速列车车轮多边形检测方法。首先,结合一致相关系数,从滤波后的原始信号中提取相对稳定的短时时域信号。其次,将时域信号重采样到角域,再利用角域同步平均对角域信号进行去噪,得到特征向量。最后,根据特征向量计算反映车轮多边形状态的粗糙度水平和多边形阶次这两个参数,完成车轮多边形的准确估计。仿真分析和实例验证表明:该方法可以有效增强同步分量,去除速度因素以及轨道不平顺等偶然干扰因素的影响,完成高速列车车轮多边形的检测。
Abstract:Wheel polygons generally exist on railway vehicles, especially in the case of high speed. It will produce strong periodic excitation to vehicles and tracks, affecting the safety of vehicle operation and passenger comfort. Therefore, it is of great significance to study the detection method of wheel polygons. Using the axle box vertical vibration acceleration signal as the detection data, a wheel polygon detection method of high-speed train based on angle domain synchronous averaging is proposed. First of all, combined with the concordance correlation coefficient, the relatively stable short-time domain signal is extracted from the filtered original signal.Secondly, the time domain signal is resampled to the angle-domain, and then the angle-domain synchronous averaging is used to de-noise the signal,so that the eigenvector is obtained.Finally,the roughness level and polygon order,which reflect the wheel polygon state,are calculated according to the eigenvector to complete the accurate estimation of the wheel polygon.Simulation analysis and case verification show that this method can effectively enhance the synchronous component,remove the influence of accidental interference factors such as speed factors and track irregularity,and complete the detection of wheel polygons of high-speed trains.
[1]SUN Y,ZHAI W M,YE Y G,et al. A simplified moelfor solving wheel-rail non-hertzian normal contact problem under the influence of yaw angle[J]. International Journal of Mechanical Sciences,2020,174:105554.
[2]CUI D B,ZHANG X,WANG R C,et al. The effect of 3D wear state of wheel polygon on wheel-rail systemdynamics[J]. Vehicle System Dynamics,2022,60(9):3109-3126.
[3]迟胜超,刘兵,钱彦平,等.地铁列车全车车轮不圆度对比测试分析[J].铁道科学与工程学报,2020,17(8):2093-2100.
[4]刘鹏飞,杨绍普,刘永强,等.单轴滚动台车轮多边形激振试验及动态仿真[J].振动与冲击,2022,41(8):102-109.
[5]李奕璠,刘建新,李忠继.基于Hilbert-Huang变换的列车车轮失圆故障诊断[J].振动.测试与诊断,2016,36(4):734-739.
[6]LI Y F,ZUO M J,LIN J H,et al. Fault detection meth od for railway wheel flat using an adaptivemultiscale morphological filter[J]. Mechanical Systems and SignalProcessing,2017(84):642-658.
[7]YE YG,SHI DC,KRAUSE P,et al. Wheel flat can cause or exacerbate wheel polygonization[J]. Vehicle System Dynamics,2020,58(10):1575-1604.
[8]WU H,WU P B,LI F S,et al. Fatigue analysis of the gearbox housing in high-speed trains under wheel polygonization using a multibody dynamics algorithm[J]. Engineering Failure Analysis,2019(100):351-364.
[9]魏子龙,孙宪夫,杨飞,等.车轮多边形激扰下轨道几何检测数据偏差规律及限值研究[J].振动与冲击,2023,42(7):207-216.
[10]丁建明,林建辉,易彩,等.车轮不圆顺动态检测的时频特征圈内定位比较法[J].振动与冲击,2013,32(19):39-43.
[11]周璇,陈光雄,赵鑫.基于经验模式分解和神经网络的车轮踏面擦伤检测方法[J].润滑与密封,2015,40(6):13-18,24.
[12]LI Y F,LIU J X,WANG Y. Railway wheel flat detection based on improved empirical mode decomposition[J]. Shock and Vibration,2016,2016(4):4879283.
[13]孙琦,张兵,李艳萍,等.一种波长固定的车轮多边形在线故障检测方法[J].铁道科学与工程学报,2018,15(9):2343-2348.
[14]徐晓迪,刘金朝,孙善超,等.基于车辆动态响应的车轮多边形自动识别方法[J].铁道建筑,2019,59(9):101-105.
[15]宋颖,梁磊,王玥,等.基于改进EEMD和WVD联合时频分析的车轮多边形识别方法[J].交通运输工程学报,2021,21(6):259-268.
[16]WANG Q S,XIAO Z M,ZHOU J S,et al. A new DFT-based dynamic detection framework for polygonal wear state of railway wheel[J]. Vehicle System Dynamics,2023,61(8):2051-2073.
[17]朱海燕,胡华涛,尹必超,等.轨道车辆车轮多边形研究进展[J].交通运输工程学报,2020,20(1):102-119.
[18]李凤林,杜红梅,巫忠书,等.基于EEMD的列车车轮多边形故障诊断方法[J].机械,2021,48(5):43-51.
[19]魏来,曾京,高浩,等.基于轴箱高频振动的车轮不圆辨识方法研究[J].西南交通大学学报,2024, 59(1):211-219.
[20]毛冉成,曾京,石怀龙,等.车轮多边形激励下高速转向架构架振动特性分析[J].铁道学报,2022,44(9):26-32.
[21]代士超,郭瑜,伍星.基于同步平均与倒频谱编辑的齿轮箱滚动轴承故障特征量提取[J].振动与冲击,2015,34(21):205-209.
[22]FENG C,MA Y,TU X M,et al. A note on the concordance correlation coefficient[J]. Advances&Applications in Statistics,2010,15(2):195-205.
基本信息:
DOI:
中图分类号:U279.3
引用信息:
[1]陈昊苓,张兵.基于角域同步平均的高速列车车轮多边形检测方法[J].机械,2024,51(11):23-32.
基金信息:
国家自然科学基金(U19A20110)