265 | 7 | 17 |
下载次数 | 被引频次 | 阅读次数 |
建立了包含PID悬浮控制系统的两节编组磁浮列车动力学模型和细致的道岔梁有限元模型,仿真分析了不同悬浮控制参数条件下磁浮列车以30 km/h通过道岔梁时的动力学响应。仿真结果表明,间隙反馈系数取值偏小时,电磁铁悬浮间隙的波动幅值较大,不利于行车安全;增大间隙反馈系数,电磁悬浮系统的特征频率逐渐接近道岔梁的一阶垂弯模态频率,导致车岔耦合振动更强烈。间隙速度反馈系数取值较小时,电磁悬浮系统的阻尼偏小,车体振动加速度较大;间隙速度反馈系数取值偏大时,微分环节超前调节作用过强,车岔耦合振动剧烈。为缓解磁浮车辆与道岔梁的耦合振动,建议间隙反馈系数在7000~8000之间选取,速度反馈系数在45~60之间选取。
Abstract:In this paper, a dynamic model of two-car maglev trainset is built considering the PID levitation control system, meanwhile, a detailed finite element model of the switch girder is also established. Then, they are used to calculate dynamic response of maglev train with different levitation control parameters whenit passes through the switch girder at a speed of 30 km/h. The simulated results show that the levitation airgap fluctuation become larger when the airgap feedback coefficient is small, which is unfavorable for train ride safety. With the increase of airgap feedback coefficient, the characteristic frequency of electromagnetic levitation system gradually approaches the first-order vertical bending modal frequency of the switch girder, which leads to stronger coupled vibration. When the airgap velocity feedback coefficient is small, the damping of electromagnetic levitation system is small, so the vibration acceleration of carbody become larger. If the airgap velocity feedback coefficient is quite large, the coupled vibration is violent due totoo strong lead compensation effect. In order to alleviate the coupled vibration between maglev vehicles and the switch girder, it is suggested to select the airgap feedback coefficient between 7000 and 8000 and the airgap velocity feedback coefficient between 45 and 60.
[1]翟婉明,赵春发.现代轨道交通工程科技前沿与挑战[J].西南交通大学学报,2016,51(2):209-226.
[2]Fichtner K,Pichlmeier F. The Transrapid guideway switch test and verification[C]. Shanghai:Proceedings of the 18th International Conference on Magnetically Levitated Systems and Linear Drives,2004:624-631.
[3]李莉,孟光.慢起慢落时磁浮车辆与钢轨道框架耦合共振分析[J].振动与冲击,2006,25(6):46-48.
[4]殷月俊,罗汉中,黄醒春.高速磁浮道岔振动响应的原位实测[J].上海交通大学学报,2007,41(4):658-663.
[5]Zhao Chunfa,Gu Xingtao,Xiao Zhou. Dynamic analysis of maglev train and switch beam coupled system[C]. Chengdu:Advance in Environmental Vibration,the 5th International Symposium on Environmental Vibration,2011:528-533.
[6]靖仕元.多重调谐质量调谐阻尼器的磁浮道岔减振方案[J].铁道工程学报,2019,36(4):80-83,89.
[7]柴小鹏,汪正兴,王波,等.磁浮工程道岔梁的TLMD减振技术研究[J].世界桥梁,2017,45(2):60-65.
[8]刘大玲.中低速磁浮道岔动载试验方法研究[J].城市轨道交通研究,2017,20(5):89-92.
[9]罗华军,吴志会,佟来生,等.中低速磁浮交通车岔耦合振动研究[J].电力机车与城轨车辆,2018,41(1):5-8.
[10]王辉,钟晓波,沈钢.弹性轨道梁上磁悬浮控制方法[J].交通运输工程学报,2013,13(5):33-38,46.
[11]黎松奇,张昆仑,刘国清,等.基于逆系统方法的磁浮列车非线性控制[J].控制工程,2017,24(8):1542-1546.
[12]李晓龙,翟明达,郝阿明.基于输出饱和条件的磁浮列车悬浮控制参数优化[J].国防科技大学学报,2017,39(4):149-153.
[13]周丹峰,李杰,余佩倡,等.磁浮交通轨排耦合自激振动分析及自适应控制方法[J].自动化学报,2019,45(12):2328-2343.
[14]李云钢,常文森.磁浮列车悬浮系统的串级控制[J].自动化学报,1999,25(2):107-111.
[15]刘恒坤,常文森.磁悬浮列车的双环控制[J].控制工程,2007,14(2):198-2000.
[16]曾国锋,袁亦竑,吉文,等.长沙中低速磁浮工程的道岔设计与调试[J].城市轨道交通研究,2016,19(5):44-48.
[17]张宇生,赵春发,周文,等.不同约束条件下中低速磁浮道岔主动梁自振特性[J].铁道标准设计,2020,64(4):22-27.
[18]任晓博,赵春发,冯洋,等.中低速磁浮车辆-轨道-桥梁垂向耦合振动仿真分析[J].铁道标准设计,2019,63(2):70-76.
[19]李倩,黄海于,冯洋,等.磁浮交通系统动力学分布式协同仿真接口的设计与实现[J].计算机应用,2019,39(S1):164-167.
[20]赵春发,翟婉明.常导电磁悬浮动态特性研究[J].西南交通大学学报,2004,39(4):464-468.
基本信息:
DOI:
中图分类号:U237;U266.4
引用信息:
[1]杨志南,冯洋,刘东生等.悬浮控制参数对磁浮车辆与道岔梁耦合振动的影响分析[J].机械,2022,49(02):38-46.
基金信息:
中铁第一勘察设计院集团有限公司课题:磁浮道岔优化创新及选型研究(院科18-05); 国家重点研发计划课题子任务:高速磁浮车辆动力学性能匹配设计理论与技术(2016YFB1200602-15)