nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2023, 08, v.50 39-46
基于形态学滤波的车轮多边形故障诊断方法
基金项目(Foundation):
邮箱(Email):
DOI:
摘要:

通过车轮多边形轴箱振动响应提出一种基于形态学滤波的车轮多边形故障诊断方法。核心是通过形态学滤波算法对轴箱振动加速度信号进行降噪,通过降噪信号频谱分析确认是否存在多边形故障,并根据多边形主频计算多边形阶次。首先,根据车轮多边形仿真信号研究形态学滤波器类型、结构元素类型、结构元素尺寸对车轮多边形信号降噪的影响,并给出上述参数的选择建议;然后,通过车轮多边形仿真信号验证本文多边形故障诊断方法的有效性;最后,通过线路试验数据和轮对多边形测试验证该方法的有效性。验证结果表明,该方法可实现车轮多边形故障信号降噪,并能有效诊断出车轮多边形故障。

Abstract:

According to the vibration response of axle box, a fault diagnosis method based on morphological filtering is proposed to identify the polygonal wheel in this paper. The core is to denoise the vibration signal of the axle box through the morphological filtering method, then distinguish the polygon fault and calculate the polygon order through spectrum analysis. Firstly, the influence of the morphological filter type, the structure element type and the structure element size on the denoise of wheel polygon signal are discussed according to the wheel polygon simulation signal, and the suggestion on the selection of the above parameters are given.Secondly, the simulation test is conducted to verify the effectiveness of the proposed method. Finally, the line test and the wheel set polygon test are conducted to verify the effectiveness of the proposed method. The results show that the method based on morphological filtering can denoise the wheel polygon signal and diagnose the wheel polygon fault effectively.

参考文献

[1]何伟,张合吉,陈帅,等.车轮多边形对地铁车辆一系钢弹簧疲劳寿命的影响研究[J].机械,2020,47(6):44-50.

[2]陶功权.和谐型电力机车车轮多边形磨耗形成机理研究[D].成都:西南交通大学,2018.

[3]Fu B,Bruni S,Luo S. Study on wheel polygonization of a metro vehicle based on polygonal wear simulation[J]. Wear, 2019(438-439):203071.

[4]Cai W,Chi M,Wu X,et al. Experimental and numerical analysis of the polygonal wear of high-speed trains[J]. Wear, 2019(440-441):203079.

[5]朱彬.高速列车车轮多边形磨耗机理研究[D].成都:西南交通大学,2021.

[6]陈龙.地铁车轮不圆形成机理研究[D].成都:西南交通大学,2019.

[7]陶功权,谢清林,刘晓龙,等.形态学滤波方法在车轮非圆化信号降噪中的应用[J].机械工程学报,2020,56(18):116-122.

[8]李凤林,杜红梅,巫忠书,等.基于EEMD的列车车轮多边形故障诊断方法[J].机械,2021,48(5):43-51.

[9]孙琦,张兵,李艳萍,等.一种波长固定的车轮多边形在线故障检测方法[J].铁道科学与工程学报,2018,15(9):2343-2348.

[10]李奕璠,刘建新,李忠继.基于Hilbert-Huang变换的列车车轮失圆故障诊断[J].振动.测试与诊断,2016,36(4):734-739,812-813.

[11]李大柱,牛江,梁树林,等.基于多尺度时频图与卷积神经网络的车轮故障智能诊断[J].铁道科学与工程学报,2023(3):1032-1043.

[12]朱云博,冯广斌,孙华刚,等.基于数学形态学的振动信号降噪和解调方法研究[J].机械科学与技术,2012,31(8):1261-1264.

[13]Huang Y,Lin J,Liu Z,et al. A Morphological Filtering Method Based on Particle Swarm Optimization for Railway Vehicle Bearing Fault Diagnosis[J]. Shock and Vibration,2019,2019(1):1-16.

[14]张文斌,杨辰龙,周晓军.形态滤波方法在振动信号降噪中的应用[J].浙江大学学报(工学版),2009,43(11):2096-2099.

[15]宫鹏涵,周克栋,赫雷,等.形态滤波方法在抵肩力信号降噪中的应用研究[J].兵工学报,2017,38(7):1416-1421.

[16]李非.基于EMD和形态学理论的齿轮故障诊断研究[D].石家庄:石家庄铁道大学,2017.

[17]赵昭,刘利林,张承学,等.形态学滤波器结构元素选取原则研究与分析[J].电力系统保护与控制,2009,37(14):21-25,35.

基本信息:

DOI:

中图分类号:U279

引用信息:

[1]李凤林,杜红梅,樊懿葳等.基于形态学滤波的车轮多边形故障诊断方法[J].机械,2023,50(08):39-46.

基金信息:

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索