55 | 0 | 15 |
下载次数 | 被引频次 | 阅读次数 |
温度是影响45钢材料力学和热学性能的重要因素。因此,通过开展不同温度下的准静态拉伸等一系列材料力学及热学性能测试试验,研究了温度对45钢材料性能的影响规律。力学性能试验结果表明,在20~900℃内,随着温度的升高,拉伸应力-应变曲线的屈服平台和硬化段逐渐消失,曲线趋于平缓,抗拉强度在900℃时降低90%,且断后伸长率与断面收缩率显著提升,表明温度升高促进了45钢材料的塑性变形;45钢材料杨氏模量和泊松比在700℃时分别降低至常温的60%与28%,刚度明显降低。热学性能试验表明,在20~800℃内,热导率在20~300℃范围内基本保持在常温水平,而后随温度升高有所降低;比热容随温度的升高逐渐增大,在700℃时超过常温时的两倍;线膨胀系数整体波动较小,在700℃时最高。
Abstract:Temperature is an important factor affecting the mechanical and thermal properties of 45 steel. In this paper, the effect of temperature on the properties of 45 steel is studied through a series of mechanical and thermal properties tests of materials such as quasi-static stretching at different temperatures. The mechanical properties test results show that the yield platform and hardening section of the tensile stress-strain curve gradually disappear with the increase of temperature in the range of 20-900 ℃, the curve tends to be flat, the tensile strength decreases by 90% at 900 ℃, and the elongation and section shrinkage after fracture increase significantly, indicating that the temperature increase leads to the plastic deformation of 45 steel. Young's modulus and Poisson's ratio of 45 steel are reduced to 60% and 28% of room temperature respectively at 700 ℃, and the stiffness of 45 steel is significantly reduced. The thermal performance test shows that the thermal conductivity basically stays at room temperature in the range of 20-800 ℃, and then decreases with the increase of temperature. The specific heat capacity increases gradually with the increase of temperature, and is more than twice of normal temperature at 700 ℃. The linear expansion coefficient exhibits minor fluctuations and reaches the highest value at 700 ℃.
[1]宋玉,廖永浩,于鑫,等.锅炉高温再热器长时服役TP310HCbN钢管失效分析[J].发电设备,2024,38(3):172-176.
[2]郑建军,樊子铭,程旭,等.中压主汽门用20Cr1Mo1VTiB钢紧固螺栓断裂分析[J].金属热处理,2023,48(11):293-299.
[3]戴明华,胡平,盈亮,等.考虑损伤的热成形淬硬硼钢失效行为建模研究[J].机械工程学报,2024,60(6):216-226.
[4]李建,石宪,黄城荣,等.局部火灾下多层钢框架结构抗火抗倒塌性能研究[J].中国安全生产科学技术,2023,19(S1):214-218.
[5]赵丽,李晋峰. 45钢高温拉伸性能试验研究[J].大型铸锻件,2013(5):31-34.
[6]花艳侠,骆春民. 45钢连铸坯的高温拉伸性能[J].理化检验-物理分册,2023,59(6):33-35.
[7]李国和,王敏杰.淬硬45钢在高温、高应变率下的动态力学性能及本构关系[J].爆炸与冲击,2010,30(4):433-438.
[8]魏刚,张伟,邓云飞.基于J-C模型的45钢本构参数识别及验证[J].振动与冲击,2019,38(5):173-178.
[9]JOHNSON G R,COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures:Proceedings of the Seventh International Symposium on Ballistics[C]. Hague, The Netherland:Seventh International Symposium on Ballistics,1983.
[10]JOHNSON G R,COOK W H. Fracture characteristics of three metals subjected to various strains,strain rates,temperatures and pressures[J]. Engineering Fracture Mechanics,1985,21(1):31-48.
[11]国家市场监督管理总局,国家标准化管理委员会.金属材料拉伸试验第1部分:室温试验方法:GB/T 228.1-2021[S].北京:中国标准出版社,2021.
[12]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.金属材料拉伸试验第2部分:高温试验方法:GB/T 228.2-2015[S].北京:中国标准出版社,2016.
[13]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.金属材料弹性模量和泊松比试验方法:GB/T22315-2008[S].北京:中国标准出版社,2009.
[14]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.闪光法测量热扩散系数或导热系数:GB/T 22588-2008[S].北京:中国标准出版社,2009.
[15]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.金属材料热膨胀特征参数的测定:GB/T 4339-2008[S].北京:中国标准出版社,2009.
[16]汪甜甜,蒲春雷,方实年,等.基于45钢热变形中动态再结晶行为的本构模型[J].安徽工业大学学报:自然科学版,2017,34(3):221-228.
[17]刘未钦,刘禹尧,刘鹏,等.桥梁耐候钢Q345qDNH高温力学性能试验研究[J].铁道学报,2022,44(11):136-143.
[18]刘星海,武凤娟,武会宾,等. GCr15钢的高温力学性能研究[J].热加工工艺,2013,42(14):60-63.
[19]HORI S.Effect of carbon on the low temperature brittleness of iron[J].Journal of Japan Institute of Metal,1980,44(2):138-143.
[20]孙惠,朱佳音.高温处理建筑用6063铝合金的拉伸性能研究[J].兵器材料科学与工程,2023,46(4):76-80.
基本信息:
DOI:
中图分类号:TG142.1
引用信息:
[1]彭照波,孔金星,刘思来等.温度对45钢材料性能影响的试验研究[J].机械,2025,52(08):23-27+68.
基金信息: