nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 08, v.52 14-22
基于DQN和DDPG算法的多智能体泵系统节能控制优化研究
基金项目(Foundation): 成都市技术创新研发项目(一般项目)(2024-YF05-01387-SN); 四川省科技厅项目(2024ZHCG0113)
邮箱(Email):
DOI:
摘要:

为解决泵系统节能控制优化过程中多设备协同控制的问题,提出一种基于深度Q网络(Deep Q-Network,DQN)和深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)算法的多智能体强化学习泵系统节能控制优化策略。将泵送系统构建为马尔可夫决策过程,采用DQN算法构建泵启停离散动作空间,DDPG算法构建电机转速连续动作空间,并在DQN和DDPG算法中嵌入长短期记忆网络(Long Short-Term Memory,LSTM)用于增强记忆历史运行数据能力,提高智能体训练和控制性能。实验结果表明,基于多智能体强化学习控制的泵系统较人工调控节能15.81%,具有较好的节能控制效果。

Abstract:

To address the issue of multi-equipment cooperative control in the energy-saving optimization process of pump systems, this paper proposes a multiple-agent reinforcement learning energy-saving control optimization strategy for pump systems based on the Deep Q-Network(DQN) and Deep Deterministic Policy Gradient(DDPG) algorithms. The pump system is modeled as a Markov Decision Process(MDP), where the DQN algorithm is employed to construct the discrete action space for pump start/stop operations, and the DDPG algorithm is used to build the continuous action space for motor speed control. Additionally, Long Short-Term Memory(LSTM) networks are embedded into both the DQN and DDPG algorithms to memorize historical operational data, thereby enhancing agent training and control performance. Experimental results demonstrate that the pump system controlled by the multi-agent reinforcement learning approach achieves a 15.81% energy saving compared to manual regulation, exhibiting superior energy-saving control effectiveness.

参考文献

[1]吴玉珍,胡承炜,陈乃镝.泵系统能耗评估与节能建议的探讨[J].化工设备与管道,2022,59(3):59-65.

[2]甄岩,袁健全,池庆玺,等.深度强化学习方法在飞行器控制中的应用研究[J].战术导弹技术,2020(4):112-118.

[3]王远大.机器人深度强化学习控制方法研究[D].南京:东南大学,2020.

[4]罗印,徐文平.基于改进强化学习的机器人双足步态控制方法[J].传感器与微系统,2023,42(9):9-13.

[5]谢黎龙,李勇汇,范培潇,等.基于深度强化学习的孤立多微电网系统频率和电压综合控制[J].电力自动化设备,2024,44(6):118-126.

[6]张有兵,林一航,黄冠弘,等.深度强化学习在微电网系统调控中的应用综述[J].电网技术,2023,47(7):2774-2788.

[7]时高松,赵清海,董鑫,等.基于PPO算法的自动驾驶人机交互式强化学习方法[J].计算机应用研究,2024,41(9):2732-2736.

[8]陈财会,张天宇,黄健康,等.基于DQN算法的泵站供水系统节能控制优化[J].净水技术,2024,43(4):60-67.

[9]王涛,于泽沛,时斌,等.基于LSTM与DDPG的空调能耗优化控制策略[J].计算机与数字工程,2024,52(11):3439-3445.

[10]檀朝东,蔡振华,邓涵文,等.基于强化学习的煤层气井螺杆泵排采参数智能决策[J].石油钻采工艺,2020,42(1):62-69.

[11]韩智聪.基于强化学习的暖通空调冷却侧节能优化控制方法研究[D].苏州:苏州科技大学,2023.

[12]侯慧敏,周冬蒙,田俊姣,等.变频调速水泵装置变速特性试验研究[J].水电能源科学,2020,38(6):154-157.

[13]ZHANG Y Z,ZHU J R,WANG H Y,et al. Deep reinforcement learning-based adaptive modulation for underwater acoustic communication with outdated channel state information[J]. Remote Sensing,2022,14(16):3947.

[14]YAN N,HUANG S B,KONG C. Reinforcement learning-based autonomous navigation and obstacle avoidance for USVs under partially observable conditions[J]. Mathematical Problems in Engineering,2021:5519033.

[15]刘家池,陈秀梅,邓娅莉.基于改进DDPG-PID的芯片共晶键合温度控制[J].半导体术,2024,49(11):973-980.

[16]HAUSKNECHT M,STONE P. Deep recurrent q-learning for partially observable MDPs[J]. Computer Science,2015(7):06527.

基本信息:

DOI:

中图分类号:TP273;TH38

引用信息:

[1]钟林涛,宋冬梅,张衡镜等.基于DQN和DDPG算法的多智能体泵系统节能控制优化研究[J].机械,2025,52(08):14-22.

基金信息:

成都市技术创新研发项目(一般项目)(2024-YF05-01387-SN); 四川省科技厅项目(2024ZHCG0113)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索