41 | 0 | 27 |
下载次数 | 被引频次 | 阅读次数 |
为探究非线性因素对单级齿轮传动系统的运动影响,综合考虑齿侧间隙、激励频率等非线性因素对系统的震动影响,考虑齿轮系统的纵向振动位移,采用集中质量法建立纵向位移和扭转位移耦合的非线性动力学模型,并建立相关动力学方程。运用ode45函数对齿轮系统状态方程进行数值求解,结合系统的最大李雅普诺夫指数图分析随激励频率和齿侧间隙变化的分岔和混沌特性,得到以下结论:激励频率在[2.2, 3.1]区间变化时,随着激励频率的增加,系统由单周期运动激变为混沌运动,最后又经逆倍化分岔回到单周期运动,对应的李雅普诺夫指数呈现负-正-负的变化;齿侧间隙在[0.06, 0.075]区间变化时,随着齿侧间隙的增加,系统由单周期运动激变为混沌运动,经倍化分岔进入4周期运动,最后变为带有短暂周期窗口的不稳定混沌运动,对应的李雅普诺夫指数出现正负交替,在不稳定的混沌区域更是出现频繁正负交替的现象。以上分析结果可为齿轮激励频率的选取、齿侧间隙的设计提供理论依据。
Abstract:In order to explore the influence of nonlinear factors on the motion of the single-stage gear transmission system, the influence of nonlinear factors such as backlash and excitation frequency on the vibration of the system is comprehensively investigated, and by taking into account the longitudinal vibration displacement of the gear system, the nonlinear dynamic model of longitudinal displacement and torsional displacement coupling is established through the concentrated mass method, and the relevant dynamic equations are derived. The ode45 function is adopted to numerically solve the equation of state of the gear system. Combined with the maximum Lyapunov exponential diagram of the system, the bifurcation and chaotic characteristics with the excitation frequency and tooth clearance are analyzed, and the following conclusions are obtained: when the excitation frequency varies within [2.2, 3.1], with the increase of the excitation frequency, the system changes from single-periodic motion to chaotic motion, and finally returns to single-period motion through inverse doubling, and the corresponding Lyapunov exponent shows a negative-positive-negative change pattern; when the backlash varies within [0.06, 0.075], with the increase of tooth clearance, the system changes from a single-period motion to a chaotic motion, evolves into a four-period motion through doubling bifurcation, and finally becomes an unstable chaotic motion with a short periodic window, and the corresponding Lyapunov exponent alternates between positive and negative values, especially frequent in the unstable chaotic region. The analysis results can provide a theoretical basis for the selection of gear excitation frequency and the design of backlash.
[1]安占飞,房宏威.渐开线直齿轮弯曲应力有限元分析[J].机械,2013,40(S1):78-80.
[2]李孝鹏,朱顺鹏,黄洪钟,等.基于线性疲劳累积损伤理论的直齿圆锥齿轮传动可靠度计算[J].机械,2009,36(8):1-4.
[3]韩金林.谐波齿轮传动系统非线性动力学特性研究[D].武汉:武汉理工大学,2024.
[4]郭雄雄.正交面齿轮传动系统非线性动力学特性[J].内燃机与配件,2024(21):31-34.
[5]LEI L J,LI G S,NA H L. 2k-H planetary gear transmission system and its largest lyapunov exponent[J]. Applied Mechanics and Materials,2014,705(12):83-86.
[6]JIANG Y,ZHU H,LI Z,et al. The nonlinear dynamics response of cracked gear system in a coal cutter taking environmental multi-frequency excitation forces into consideration[J]. Nonlinear Dynamics,2016,84(1):203-222.
[7]王靖岳,刘宁,王浩天.干摩擦对行星齿轮传动系统分岔特性的影响分析[J].科学技术与工程,2020(22):8964-8969.
[8]崔灿,张琦,佟操,等.基于最大Lyapunov指数的行星齿轮振动可靠性灵敏度分析[J].机电信息,2024(19):28-31.
[9]田亚平.直齿圆柱齿轮传动系统非线性动力学特性研究[D].兰州:兰州交通大学,2022.
[10]王永亮,完颜靖,尹凤伟,等.含故障的齿轮系统非线性动力学特性分析[J].机械传动,2019(10):136-140.
[11]彭毓敏,马超,栾忠权,等.多因素条件下单级齿轮系统的非线性特性[J].中国机械工程,2018(8):937-942.
[12]蒋强.单级齿轮传动系统非线性动力学分析[J].甘肃科技纵横,2022(1):30-33.
[13]YUN Z L,FEI S J,FENG G X. Modeling and dynamics analyzing of a torsional-bending-pendular face-gear drive system considering multi-state engagements[J]. Mechanism and Machine Theory,2020(149):103790.
[14]WANG X. Stability research of multistage gear transmission system with crack fault[J]. Journal of Sound and Vibration,2018,434(7):63-77.
[15]王靖岳.随机扰动下齿轮传动系统的非线性动力学与故障辨识研究[D].沈阳:东北大学,2017.
基本信息:
DOI:
中图分类号:TH132.41
引用信息:
[1]文学,刘粤洺,朱梅玉等.基于李雅普诺夫指数的直齿轮非线性特性研究[J].机械,2025,52(08):7-13.
基金信息:
湖南省省市联合基金(2022JJ50243); 邵阳学院2024年研究生科研创新项目(CX2024SY042); 区域联合基金(2025JJ70197)